Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290270

RESUMO

An important research effort on the design of the magnetic particles is increasingly required to optimize the heat generation in biomedical applications, such as magnetic hyperthermia and heat-assisted drug release, considering the severe restrictions for the human body's exposure to an alternating magnetic field. Magnetic nanoparticles, considered in a broad sense as passive sensors, show the ability to detect an alternating magnetic field and to transduce it into a localized increase of temperature. In this context, the high biocompatibility, easy synthesis procedure and easily tunable magnetic properties of ferrite powders make them ideal candidates. In particular, the tailoring of their chemical composition and cation distribution allows the control of their magnetic properties, tuning them towards the strict demands of these heat-assisted biomedical applications. In this work, Co0.76Zn0.24Fe2O4, Li0.375Zn0.25Fe2.375O4 and ZnFe2O4 mixed-structure ferrite powders were synthesized in a 'dry gel' form by a sol-gel auto-combustion method. Their microstructural properties and cation distribution were obtained by X-ray diffraction characterization. Static and dynamic magnetic measurements were performed revealing the connection between the cation distribution and magnetic behavior. Particular attention was focused on the effect of Co2+ and Li+ ions on the magnetic properties at a magnetic field amplitude and the frequency values according to the practical demands of heat-assisted biomedical applications. In this context, the specific loss power (SLP) values were evaluated by ac-hysteresis losses and thermometric measurements at selected values of the dynamic magnetic fields.


Assuntos
Cobalto/química , Compostos Férricos/química , Lítio/química , Nanopartículas de Magnetita/química , Zinco/química , Materiais Biocompatíveis/química , Pós/química , Temperatura , Difração de Raios X
2.
Sci Rep ; 9(1): 14119, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576003

RESUMO

Magnetic materials are crucial for the efficiency of the conversion-storage-transport-reconversion energy chain, and the enhancement of their performance has an important impact on technological development. The present work explores the possibility of preparing hetero-nano-structured ceramics based on magnetic oxides, by coupling a ferrimagnetic phase (F) with an antiferromagnetic one (AF) on the nanometric scale. The field-assisted sintering technique or SPS (Spark-Plasma Sintering), adopted at this purpose, ensures the preservation of nano-sized crystals within the final solid structure. The aim is to establish how exchange bias may affect the resulting nano-consolidates and to investigate the potential of this process to increase the total magnetic anisotropy of the CoFe2O4 grains, and thus their coercive field, while keeping the saturation magnetization the same. The structure, microstructure and magnetic properties of the ceramics obtained were studied by several techniques. The results show that the sintering process, along with its typical reductive atmosphere, modifies the composition of the constituents. A new metallic phase appears as a consequence of the reciprocal diffusion of Co and Ni cations, leading to a change in the amount and structure of the AF phase. We propose a schematic representation of the atomic movements that hinder an exchange bias effect between the F and AF phases.

3.
Phys Rev Lett ; 91(25): 257207, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754151

RESUMO

A detailed understanding of the formation of magnetic vortices in closely spaced ferromagnetic nanoparticles is important for the design of ultra-high-density magnetic devices. Here, we use electron holography and micromagnetic simulations to characterize three-dimensional magnetic vortices in chains of FeNi nanoparticles. We show that the diameters of the vortex cores depend sensitively on their orientation with respect to the chain axis and that vortex formation can be controlled by the presence of smaller particles in the chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...